Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Vivek, Skanda [VerfasserIn]   i
Titel:Retrieval-augmented generation in production with Haystack
Titelzusatz:building trustworthy, scalable, reliable, and secure AI systems
Verf.angabe:Skanda Vivek
Ausgabe:[First edition].
Verlagsort:Sebastopol, CA
Verlag:O'Reilly Media, Inc.
Jahr:2025
Umfang:1 online resource (132 pages)
Illustrationen:illustrations
Abstract:In today's rapidly changing AI technology environment, software engineers often struggle to build real-world applications with large language models (LLM). The benefits of incorporating open source LLMs into existing workflows is often offset by the need to create custom components. That's where Haystack comes in. This open source framework is a collection of the most useful tools, integrations, and infrastructure building blocks to help you design and build scalable, API-driven LLM backends. With Haystack, it's easy to build extractive or generative QA, Google-like semantic search to query large-scale textual data, or a reliable and secure ChatGPT-like experience on top of technical documentation. This guide serves as a collection of useful retrieval-augmented generation (RAG) mental models and offers ML engineers, AI engineers, and backend engineers a practical blueprint for the LLM software development lifecycle.
URL:Aggregator: https://learning.oreilly.com/library/view/-/9781098165161/?ar
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Génération automatique de texte
 Intelligence artificielle ; Logiciels
 Traitement automatique des langues naturelles
K10plus-PPN:1924462044
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m4718964458
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69341237   QR-Code
zum Seitenanfang