Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Meixner, Eva [VerfasserIn]   i
 Glogauer, Benjamin [VerfasserIn]   i
 Klüter, Sebastian [VerfasserIn]   i
 Wagner, Friedrich [VerfasserIn]   i
 Neugebauer, David [VerfasserIn]   i
 Hoeltgen, Line [VerfasserIn]   i
 Dinges, Lisa A. [VerfasserIn]   i
 Harrabi, Semi B. [VerfasserIn]   i
 Liermann, Jakob [VerfasserIn]   i
 Vinsensia, Maria [VerfasserIn]   i
 Weykamp, Fabian [VerfasserIn]   i
 Hoegen-Saßmannshausen, Philipp [VerfasserIn]   i
 Debus, Jürgen [VerfasserIn]   i
 Hörner-Rieber, Juliane [VerfasserIn]   i
Titel:Validation of different automated segmentation models for target volume contouring in postoperative radiotherapy for breast cancer and regional nodal irradiation
Verf.angabe:Eva Meixner, Benjamin Glogauer, Sebastian Klüter, Friedrich Wagner, David Neugebauer, Line Hoeltgen, Lisa A. Dinges, Semi Harrabi, Jakob Liermann, Maria Vinsensia, Fabian Weykamp, Philipp Hoegen-Saßmannshausen, Jürgen Debus, Juliane Hörner-Rieber
E-Jahr:2024
Jahr:11 September 2024
Umfang:7 S.
Fussnoten:Gesehen am 04.06.2025
Titel Quelle:Enthalten in: Clinical and translational radiation oncology
Ort Quelle:Amsterdam : Elsevier, 2016
Jahr Quelle:2024
Band/Heft Quelle:49(2024), Artikel-ID 100855, Seite 100855-1-100855-7
ISSN Quelle:2405-6308
Abstract:Introduction - Target volume delineation is routinely performed in postoperative radiotherapy (RT) for breast cancer patients, but it is a time-consuming process. The aim of the present study was to validate the quality, clinical usability and institutional-specific implementation of different auto-segmentation tools into clinical routine. - Methods - Three different commercially available, artificial intelligence-, ESTRO-guideline-based segmentation models (M1-3) were applied to fifty consecutive reference patients who received postoperative local RT including regional nodal irradiation for breast cancer for the delineation of clinical target volumes: the residual breast, implant or chestwall, axilla levels 1 and 2, the infra- and supraclavicular regions, the interpectoral and internal mammary nodes. Objective evaluation metrics of the created structures were conducted with the Dice similarity index (DICE) and the Hausdorff distance, and a manual evaluation of usability. - Results - The resulting geometries of the segmentation models were compared to the reference volumes for each patient and required no or only minor corrections in 72 % (M1), 64 % (M2) and 78 % (M3) of the cases. The median DICE and Hausdorff values for the resulting planning target volumes were 0.87-0.88 and 2.96-3.55, respectively. Clinical usability was significantly correlated with the DICE index, with calculated cut-off values used to define no or minor adjustments of 0.82-0.86. Right or left sided target and breathing method (deep inspiration breath hold vs. free breathing) did not impact the quality of the resulting structures. - Conclusion - Artificial intelligence-based auto-segmentation programs showed high-quality accuracy and provided standardization and efficient support for guideline-based target volume contouring as a precondition for fully automated workflows in radiotherapy treatment planning.
DOI:doi:10.1016/j.ctro.2024.100855
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1016/j.ctro.2024.100855
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S2405630824001320
 DOI: https://doi.org/10.1016/j.ctro.2024.100855
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:AI contouring
 Artificial intelligence
 Auto-segmentation
 Clinical implementation
 Deep learning segmentation
 Machine learning
 Quality assurance
 Target volume delineation
K10plus-PPN:1927457491
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69353669   QR-Code
zum Seitenanfang