| Online-Ressource |
Verfasst von: | Meixner, Eva [VerfasserIn]  |
| Glogauer, Benjamin [VerfasserIn]  |
| Klüter, Sebastian [VerfasserIn]  |
| Wagner, Friedrich [VerfasserIn]  |
| Neugebauer, David [VerfasserIn]  |
| Hoeltgen, Line [VerfasserIn]  |
| Dinges, Lisa A. [VerfasserIn]  |
| Harrabi, Semi B. [VerfasserIn]  |
| Liermann, Jakob [VerfasserIn]  |
| Vinsensia, Maria [VerfasserIn]  |
| Weykamp, Fabian [VerfasserIn]  |
| Hoegen-Saßmannshausen, Philipp [VerfasserIn]  |
| Debus, Jürgen [VerfasserIn]  |
| Hörner-Rieber, Juliane [VerfasserIn]  |
Titel: | Validation of different automated segmentation models for target volume contouring in postoperative radiotherapy for breast cancer and regional nodal irradiation |
Verf.angabe: | Eva Meixner, Benjamin Glogauer, Sebastian Klüter, Friedrich Wagner, David Neugebauer, Line Hoeltgen, Lisa A. Dinges, Semi Harrabi, Jakob Liermann, Maria Vinsensia, Fabian Weykamp, Philipp Hoegen-Saßmannshausen, Jürgen Debus, Juliane Hörner-Rieber |
E-Jahr: | 2024 |
Jahr: | 11 September 2024 |
Umfang: | 7 S. |
Fussnoten: | Gesehen am 04.06.2025 |
Titel Quelle: | Enthalten in: Clinical and translational radiation oncology |
Ort Quelle: | Amsterdam : Elsevier, 2016 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 49(2024), Artikel-ID 100855, Seite 100855-1-100855-7 |
ISSN Quelle: | 2405-6308 |
Abstract: | Introduction - Target volume delineation is routinely performed in postoperative radiotherapy (RT) for breast cancer patients, but it is a time-consuming process. The aim of the present study was to validate the quality, clinical usability and institutional-specific implementation of different auto-segmentation tools into clinical routine. - Methods - Three different commercially available, artificial intelligence-, ESTRO-guideline-based segmentation models (M1-3) were applied to fifty consecutive reference patients who received postoperative local RT including regional nodal irradiation for breast cancer for the delineation of clinical target volumes: the residual breast, implant or chestwall, axilla levels 1 and 2, the infra- and supraclavicular regions, the interpectoral and internal mammary nodes. Objective evaluation metrics of the created structures were conducted with the Dice similarity index (DICE) and the Hausdorff distance, and a manual evaluation of usability. - Results - The resulting geometries of the segmentation models were compared to the reference volumes for each patient and required no or only minor corrections in 72 % (M1), 64 % (M2) and 78 % (M3) of the cases. The median DICE and Hausdorff values for the resulting planning target volumes were 0.87-0.88 and 2.96-3.55, respectively. Clinical usability was significantly correlated with the DICE index, with calculated cut-off values used to define no or minor adjustments of 0.82-0.86. Right or left sided target and breathing method (deep inspiration breath hold vs. free breathing) did not impact the quality of the resulting structures. - Conclusion - Artificial intelligence-based auto-segmentation programs showed high-quality accuracy and provided standardization and efficient support for guideline-based target volume contouring as a precondition for fully automated workflows in radiotherapy treatment planning. |
DOI: | doi:10.1016/j.ctro.2024.100855 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.1016/j.ctro.2024.100855 |
| kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S2405630824001320 |
| DOI: https://doi.org/10.1016/j.ctro.2024.100855 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | AI contouring |
| Artificial intelligence |
| Auto-segmentation |
| Clinical implementation |
| Deep learning segmentation |
| Machine learning |
| Quality assurance |
| Target volume delineation |
K10plus-PPN: | 1927457491 |
Verknüpfungen: | → Zeitschrift |
Validation of different automated segmentation models for target volume contouring in postoperative radiotherapy for breast cancer and regional nodal irradiation / Meixner, Eva [VerfasserIn]; 11 September 2024 (Online-Ressource)