| Online-Ressource |
Verfasst von: | Gnatzy, Richard [VerfasserIn]  |
| Lacher, Martin [VerfasserIn]  |
| Berger, Michael [VerfasserIn]  |
| Boettcher, Michael [VerfasserIn]  |
| Deffaa, Oliver J. [VerfasserIn]  |
| Kübler, Joachim [VerfasserIn]  |
| Madadi-Sanjani, Omid [VerfasserIn]  |
| Martynov, Illya [VerfasserIn]  |
| Mayer, Steffi [VerfasserIn]  |
| Pakarinen, Mikko P. [VerfasserIn]  |
| Wagner, Richard [VerfasserIn]  |
| Wester, Tomas [VerfasserIn]  |
| Zani, Augusto [VerfasserIn]  |
| Aubert, Ophelia [VerfasserIn]  |
Titel: | Solving complex pediatric surgical case studies |
Titelzusatz: | a comparative analysis of copilot, ChatGPT-4, and experienced pediatric surgeons' performance |
Verf.angabe: | Richard Gnatzy, Martin Lacher, Michael Berger, Michael Boettcher, Oliver J. Deffaa, Joachim Kübler, Omid Madadi-Sanjani, Illya Martynov, Steffi Mayer, Mikko P. Pakarinen, Richard Wagner, Tomas Wester, Augusto Zani, Ophelia Aubert |
Jahr: | 2025 |
Umfang: | 8 S. |
Illustrationen: | Illustrationen, Diagramme |
Fussnoten: | Artikel online veröffentlicht: 02. April 2025 ; Gesehen am 10.06.2025 |
Titel Quelle: | Enthalten in: European journal of pediatric surgery |
Ort Quelle: | Stuttgart : Thieme, 1991 |
Jahr Quelle: | 2025 |
Band/Heft Quelle: | (2025) |
ISSN Quelle: | 1439-359X |
Abstract: | The emergence of large language models (LLMs) has led to notable advancements across multiple sectors, including medicine. Yet, their effect in pediatric surgery remains largely unexplored. This study aims to assess the ability of the artificial intelligence (AI) models ChatGPT-4 and Microsoft Copilot to propose diagnostic procedures, primary and differential diagnoses, as well as answer clinical questions using complex clinical case vignettes of classic pediatric surgical diseases. We conducted the study in April 2024. We evaluated the performance of LLMs using 13 complex clinical case vignettes of pediatric surgical diseases and compared responses to a human cohort of experienced pediatric surgeons. Additionally, pediatric surgeons rated the diagnostic recommendations of LLMs for completeness and accuracy. To determine differences in performance, we performed statistical analyses. ChatGPT-4 achieved a higher test score (52.1%) compared to Copilot (47.9%) but less than pediatric surgeons (68.8%). Overall differences in performance between ChatGPT-4, Copilot, and pediatric surgeons were found to be statistically significant (p < 0.01). ChatGPT-4 demonstrated superior performance in generating differential diagnoses compared to Copilot (p < 0.05). No statistically significant differences were found between the AI models regarding suggestions for diagnostics and primary diagnosis. Overall, the recommendations of LLMs were rated as average by pediatric surgeons. This study reveals significant limitations in the performance of AI models in pediatric surgery. Although LLMs exhibit potential across various areas, their reliability and accuracy in handling clinical decision-making tasks is limited. Further research is needed to improve AI capabilities and establish its usefulness in the clinical setting. |
DOI: | doi:10.1055/a-2551-2131 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1055/a-2551-2131 |
| DOI: https://doi.org/10.1055/a-2551-2131 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1927853052 |
Verknüpfungen: | → Zeitschrift |
Solving complex pediatric surgical case studies / Gnatzy, Richard [VerfasserIn]; 2025 (Online-Ressource)