Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Präsenznutzung
Signatur: Kedla   QR-Code
Standort: Bereichsbibl. Mathematik+ /
Exemplare: siehe unten
Verfasst von:Kedlaya, Kiran Sridhara   i
 Liu, Ruochuan   i
Titel:Relative p-adic Hodge theory
Titelzusatz:foundations
Verf.angabe:Kiran S. Kedlaya; Ruochuan Liu
Verlagsort:Paris
Verlag:Soc. Mathématique de France
Jahr:2015
Umfang:239 S.
Illustrationen:graph. Darst.
Gesamttitel/Reihe:Astérisque ; 371
Fussnoten:Beitr. teilw. engl., teilw. franz
ISBN:978-2-85629-807-7
Abstract:"We describe a new approach to relative p-adic Hodge theory based on systematic use of Witt vector constructions and nonarchimedean analytic geometry in the style of both Berkovich and Huber. We give a thorough development of [phi]-modules over a relative Robba ring associated to a perfect Banach ring of characteristic p, including the relationship between these objects and étale Z[subscript p]-local systems and Q[subscript p]-local systems on the algebraic and analytic spaces associated to the base ring, and the relationship between (pro-)étale cohomology and [phi]-cohomology. We also make a critical link to mixed characteristic by exhibiting an equivalence of tensor categories between the finite étale algebras over an arbitrary perfect Banach algebra over a nontrivially normed complete field of characteristic p and the finite étale algebras over a corresponding Banach Q[subscript p]-algebra. This recovers the homeomorphism between the absolute Galois groups of F[subscript p](([pi])) and Q[subscript p] ([mu] [subscript p][infinity]) given by the field of norms construction of Fontaine and Wintenberger, as well as generalizations considered by Andreatta, Brinon, Faltings, Gabber, Ramero, Scholl, and most recently Scholze. Using Huber's formalism of adic spaces and Scholze's formalism of perfectoid spaces, we globalize the constructions to give several descriptions of the étale local systems on analytic spaces over p-adic fields. One of these descriptions uses a relative version of the Fargues-Fontaine curve
DOI:doi:10.24033/ast.957
URL:DOI: https://doi.org/10.24033/ast.957
Schlagwörter:(s)p-adische Kohomologie   i
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Online-Ausgabe: Kedlaya, Kiran Sridhara, 1974 - : Relative p-adic Hodge theory. - Paris : Société Mathématique de France, 2015. - 1 Online-Ressource (239 Seiten)
RVK-Notation:SI 832   i
K10plus-PPN:829645853
Verknüpfungen:→ Übergeordnete Aufnahme
Exemplare:

SignaturQRStandortStatus
KedlaQR-CodeBereichsbibl. Mathematik+InformatikPräsenznutzung
Mediennummer: 34151259, Inventarnummer: Zs 90/62

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/67847063   QR-Code
zum Seitenanfang