Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kokh, Daria B. [VerfasserIn]   i
 Kaufmann, Tom [VerfasserIn]   i
 Kister, Bastian [VerfasserIn]   i
 Wade, Rebecca C. [VerfasserIn]   i
Titel:Machine learning analysis of [tau]RAMD trajectories to decipher molecular determinants of drug-target residence times
Verf.angabe:Daria B. Kokh, Tom Kaufmann, Bastian Kister, Rebecca C. Wade
E-Jahr:2019
Jahr:24 May 2019
Umfang:17 S.
Fussnoten:Gesehen am 11.07.2019 ; Im Titel ist "tau" als griechischer Buchstabe dargestellt
Titel Quelle:Enthalten in: Frontiers in molecular biosciences
Ort Quelle:Lausanne : Frontiers, 2014
Jahr Quelle:2019
Band/Heft Quelle:6(2019) Artikel-Nummer 36, 17 Seiten
ISSN Quelle:2296-889X
Abstract:Drug-target residence times can impact drug efficacy and safety, and are therefore increasingly being considered during lead optimization. For this purpose, computational methods to predict residence times, tau, for drug-like compounds and to derive structure-kinetic relationships are desirable. A challenge for approaches based on molecular dynamics (MD) simulation is the fact that drug residence times are typically orders of magnitude longer than computationally feasible simulation times. Therefore, enhanced sampling methods are required. We recently reported one such approach: the tauRAMD procedure for estimating relative residence times by performing a large number of random acceleration MD (RAMD) simulations in which ligand dissociation occurs in times of about a nanosecond due to the application of an additional randomly oriented force to the ligand. The length of the RAMD simulations is used to deduce tau. The RAMD simulations also provide information on ligand egress pathways and dissociation mechanisms. Here, we describe a machine learning approach to systematically analyze protein-ligand binding contacts in the RAMD trajectories in order to derive regression models for estimating tau and to decipher the molecular features leading to longer tau values. We demonstrate that the regression models built on the protein-ligand interaction fingerprints of the dissociation trajectories result in robust estimates of tau for a set of 94 drug-like inhibitors of heat shock protein 90 (HSP90), even for the compounds for which the length of the RAMD trajectories does not provide a good estimation of tau. Thus, we find that machine learning helps to overcome inaccuracies in the modelling of the bound protein-ligand complexes due to incomplete sampling or force field deficiencies. Moreover, the approach facilitates the identification of features important for residence time. In particular, we observed that interactions of the ligand with the sidechain of F138, which is located on the border between the ATP binding pocket and a hydrophobic transient sub-pocket, play a key role in slowing compound dissociation. We expect that the combination of the tauRAMD simulation procedure with machine learning analysis will be generally applicable as an aid to target-based lead optimization.
DOI:doi:10.3389/fmolb.2019.00036
URL:Volltext ; Verlag ; Resolving-System: https://doi.org/10.3389/fmolb.2019.00036
 Volltext: https://www.frontiersin.org/articles/10.3389/fmolb.2019.00036/full
 DOI: https://doi.org/10.3389/fmolb.2019.00036
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:drug-protein residence time
 drug-target binding kinetics
 Heat shock protein 90 (hsp90)
 machine learning
 Molecular Dynamics Simulation
 structure-kinetic relationships (SKRs)
 tauRAMD
K10plus-PPN:1668998327
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68407410   QR-Code
zum Seitenanfang