Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Géron, Aurélien [VerfasserIn]   i
Titel:Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition
Institutionen:Safari, an O’Reilly Media Company   i
Verf.angabe:Géron, Aurélien.
Ausgabe:2nd edition
Verlagsort:[Erscheinungsort nicht ermittelbar]
Verlag:O'Reilly Media, Inc.
Jahr:2019
Umfang:1 online resource (848 pages)
Fussnoten:Online resource; Title from title page (viewed September 30, 2019)
Abstract:Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets
URL:Aggregator: https://learning.oreilly.com/library/view/-/9781492032632/?ar
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Electronic books ; local
K10plus-PPN:1684814251
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m3606676115
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68502223   QR-Code
zum Seitenanfang