Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Scavetta, Rick [VerfasserIn]   i
 Angelov, Boyan [VerfasserIn]   i
Titel:Python and R for the Modern Data Scientist
Institutionen:Safari, an O’Reilly Media Company. [MitwirkendeR]   i
Verf.angabe:Scavetta, Rick
Ausgabe:1st edition
Verlagsort:[Erscheinungsort nicht ermittelbar]
Verlag:O'Reilly Media, Inc.
Jahr:2021
Umfang:1 online resource (60 pages)
Fussnoten:Online resource; Title from title page (viewed September 25, 2021)
Abstract:Success in data science depends on the flexible and appropriate use of tools. That includes Python and R, two of the foundational programming languages in the field. With this book, data scientists from the Python and R communities will learn how to speak the dialects of each language. By recognizing the strengths of working with both, you'll discover new ways to accomplish data science tasks and expand your skill set. Authors Boyan Angelov and Rick Scavetta explain the parallel structures of these languages and highlight where each one excels, whether it's their linguistic features or the powers of their open source ecosystems. Not only will you learn how to use Python and R together in real-world settings, but you'll also broaden your knowledge and job opportunities by working as a bilingual data scientist. Learn Python and R from the perspective of your current language Understand the strengths and weaknesses of each language Identify use cases where one language is better suited than the other Understand the modern open source ecosystem available for both, including packages, frameworks, and workflows Learn how to integrate R and Python in a single workflow Follow a real-world case study that demonstrates ways to use these languages together
ComputerInfo:Mode of access: World Wide Web.
URL:Aggregator: https://learning.oreilly.com/library/view/-/9781492093398/?ar
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Electronic books ; local
K10plus-PPN:1739146654
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m380697649X
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68662876   QR-Code
zum Seitenanfang