Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kuzmin, D. [VerfasserIn]   i
 Hajduk, Hennes [VerfasserIn]   i
 Rupp, Andreas [VerfasserIn]   i
Titel:Locally bound-preserving enriched Galerkin methods for the linear advection equation
Verf.angabe:Dmitri Kuzmin, Hennes Hajduk, Andreas Rupp
E-Jahr:2020
Jahr:14 April 2020
Umfang:15 S.
Fussnoten:Gesehen am 22.03.2021
Titel Quelle:Enthalten in: Computers & fluids
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1973
Jahr Quelle:2020
Band/Heft Quelle:205(2020), Artikel-ID 104525, Seite 1-15
ISSN Quelle:1879-0747
Abstract:In this work, we introduce algebraic flux correction schemes for enriched (P1⊕P0 and Q1⊕P0) Galerkin discretizations of the linear advection equation. The piecewise-constant component stabilizes the continuous Galerkin approximation without introducing free parameters. However, violations of discrete maximum principles are possible in the neighborhood of discontinuities and steep fronts. To keep the cell averages and the degrees of freedom of the continuous P1/Q1 component in the admissible range, we limit the fluxes and element contributions, the complete removal of which would correspond to first-order upwinding. The first limiting procedure that we consider in this paper is based on the flux-corrected transport (FCT) paradigm. It belongs to the family of predictor-corrector algorithms and requires the use of small time steps. The second limiting strategy is monolithic and produces nonlinear problems with well-defined residuals. This kind of limiting is well suited for stationary and time-dependent problems alike. The need for inverting consistent mass matrices in explicit strong stability preserving Runge-Kutta time integrators is avoided by reconstructing nodal time derivatives from cell averages. Numerical studies are performed for standard 2D test problems.
DOI:doi:10.1016/j.compfluid.2020.104525
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.compfluid.2020.104525
 Volltext: https://www.sciencedirect.com/science/article/pii/S0045793020300992
 DOI: https://doi.org/10.1016/j.compfluid.2020.104525
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Convex limiting
 Discrete maximum principles
 Enriched Galerkin method
 Flux-corrected transport
 Linear advection equation
K10plus-PPN:1752007077
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68714831   QR-Code
zum Seitenanfang