Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Kuzmin, D. [VerfasserIn]  |
| Hajduk, Hennes [VerfasserIn]  |
| Rupp, Andreas [VerfasserIn]  |
Titel: | Locally bound-preserving enriched Galerkin methods for the linear advection equation |
Verf.angabe: | Dmitri Kuzmin, Hennes Hajduk, Andreas Rupp |
E-Jahr: | 2020 |
Jahr: | 14 April 2020 |
Umfang: | 15 S. |
Fussnoten: | Gesehen am 22.03.2021 |
Titel Quelle: | Enthalten in: Computers & fluids |
Ort Quelle: | Amsterdam [u.a.] : Elsevier Science, 1973 |
Jahr Quelle: | 2020 |
Band/Heft Quelle: | 205(2020), Artikel-ID 104525, Seite 1-15 |
ISSN Quelle: | 1879-0747 |
Abstract: | In this work, we introduce algebraic flux correction schemes for enriched (P1⊕P0 and Q1⊕P0) Galerkin discretizations of the linear advection equation. The piecewise-constant component stabilizes the continuous Galerkin approximation without introducing free parameters. However, violations of discrete maximum principles are possible in the neighborhood of discontinuities and steep fronts. To keep the cell averages and the degrees of freedom of the continuous P1/Q1 component in the admissible range, we limit the fluxes and element contributions, the complete removal of which would correspond to first-order upwinding. The first limiting procedure that we consider in this paper is based on the flux-corrected transport (FCT) paradigm. It belongs to the family of predictor-corrector algorithms and requires the use of small time steps. The second limiting strategy is monolithic and produces nonlinear problems with well-defined residuals. This kind of limiting is well suited for stationary and time-dependent problems alike. The need for inverting consistent mass matrices in explicit strong stability preserving Runge-Kutta time integrators is avoided by reconstructing nodal time derivatives from cell averages. Numerical studies are performed for standard 2D test problems. |
DOI: | doi:10.1016/j.compfluid.2020.104525 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1016/j.compfluid.2020.104525 |
| Volltext: https://www.sciencedirect.com/science/article/pii/S0045793020300992 |
| DOI: https://doi.org/10.1016/j.compfluid.2020.104525 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Convex limiting |
| Discrete maximum principles |
| Enriched Galerkin method |
| Flux-corrected transport |
| Linear advection equation |
K10plus-PPN: | 1752007077 |
Verknüpfungen: | → Zeitschrift |
Locally bound-preserving enriched Galerkin methods for the linear advection equation / Kuzmin, D. [VerfasserIn]; 14 April 2020 (Online-Ressource)
68714831