Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---

+ Andere Auflagen/Ausgaben
 Online-Ressource
Verfasst von:Ebbinghaus, Heinz-Dieter [VerfasserIn]   i
 Flum, Jörg [VerfasserIn]   i
 Thomas, Wolfgang [VerfasserIn]   i
Titel:Mathematical logic
Verf.angabe:Heinz-Dieter Ebbinghaus, Jörg Flum, Wolfgang Thomas
Ausgabe:Third edition
Verlagsort:Cham
Verlag:Springer
Jahr:2021
Umfang:1 Online-Ressource (IX, 304 Seiten)
Gesamttitel/Reihe:Graduate texts in mathematics ; 291
 Springer eBook Collection
ISBN:978-3-030-73839-6
Abstract:This textbook introduces first-order logic and its role in the foundations of mathematics by examining fundamental questions. What is a mathematical proof? How can mathematical proofs be justified? Are there limitations to provability? To what extent can machines carry out mathematical proofs? In answering these questions, this textbook explores the capabilities and limitations of algorithms and proof methods in mathematics and computer science. The chapters are carefully organized, featuring complete proofs and numerous examples throughout. Beginning with motivating examples, the book goes on to present the syntax and semantics of first-order logic. After providing a sequent calculus for this logic, a Henkin-type proof of the completeness theorem is given. These introductory chapters prepare the reader for the advanced topics that follow, such as Gödel's Incompleteness Theorems, Trakhtenbrot's undecidability theorem, Lindström's theorems on the maximality of first-order logic, and results linking logic with automata theory. This new edition features many modernizations, as well as two additional important results: The decidability of Presburger arithmetic, and the decidability of the weak monadic theory of the successor function. Mathematical Logic is ideal for students beginning their studies in logic and the foundations of mathematics. Although the primary audience for this textbook will be graduate students or advanced undergraduates in mathematics or computer science, in fact the book has few formal prerequisites. It demands of the reader only mathematical maturity and experience with basic abstract structures, such as those encountered in discrete mathematics or algebra.
DOI:doi:10.1007/978-3-030-73839-6
URL:Resolving-System: https://doi.org/10.1007/978-3-030-73839-6
 Cover: https://swbplus.bsz-bw.de/bsz1759346942cov.jpg
 DOI: https://doi.org/10.1007/978-3-030-73839-6
Schlagwörter:(s)Mathematische Logik   i
Datenträger:Online-Ressource
Dokumenttyp:Einführung
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe: Ebbinghaus, Heinz-Dieter, 1939 - : Mathematical logic. - Third edition. - Cham, Switzerland : Springer, 2021. - ix, 304 Seiten
RVK-Notation:SK 130   i
K10plus-PPN:1759346942
Verknüpfungen:→ Übergeordnete Aufnahme
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68743623   QR-Code
zum Seitenanfang