Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Katzenschlager, Stephan [VerfasserIn]   i
 Zimmer, Alexandra J. [VerfasserIn]   i
 Gottschalk, Claudius [VerfasserIn]   i
 Grafeneder, Jürgen [VerfasserIn]   i
 Schmitz, Stephani [VerfasserIn]   i
 Kraker, Sara [VerfasserIn]   i
 Ganslmeier, Marlene [VerfasserIn]   i
 Muth, Amelie [VerfasserIn]   i
 Seitel, Alexander [VerfasserIn]   i
 Maier-Hein, Lena [VerfasserIn]   i
 Benedetti, Andrea [VerfasserIn]   i
 Larmann, Jan [VerfasserIn]   i
 Weigand, Markus A. [VerfasserIn]   i
 McGrath, Sean [VerfasserIn]   i
 Denkinger, Claudia M. [VerfasserIn]   i
Titel:Can we predict the severe course of COVID-19 - a systematic review and meta-analysis of indicators of clinical outcome?
Verf.angabe:Stephan Katzenschlager, Alexandra J. Zimmer, Claudius Gottschalk, Jürgen Grafeneder, Stephani Schmitz, Sara Kraker, Marlene Ganslmeier, Amelie Muth, Alexander Seitel, Lena Maier-Hein, Andrea Benedetti, Jan Larmann, Markus A. Weigand, Sean McGrath, Claudia M. Denkinger
E-Jahr:2021
Jahr:July 29, 2021
Umfang:19 S.
Fussnoten:Gesehen am 10.12.2021
Titel Quelle:Enthalten in: PLOS ONE
Ort Quelle:San Francisco, California, US : PLOS, 2006
Jahr Quelle:2021
Band/Heft Quelle:16(2021), 7, Artikel-ID e0255154, Seite 1-19
ISSN Quelle:1932-6203
Abstract:Background COVID-19 has been reported in over 40million people globally with variable clinical outcomes. In this systematic review and meta-analysis, we assessed demographic, laboratory and clinical indicators as predictors for severe courses of COVID-19. Methods This systematic review was registered at PROSPERO under CRD42020177154. We systematically searched multiple databases (PubMed, Web of Science Core Collection, MedRvix and bioRvix) for publications from December 2019 to May 31(st) 2020. Random-effects meta-analyses were used to calculate pooled odds ratios and differences of medians between (1) patients admitted to ICU versus non-ICU patients and (2) patients who died versus those who survived. We adapted an existing Cochrane risk-of-bias assessment tool for outcome studies. Results Of 6,702 unique citations, we included 88 articles with 69,762 patients. There was concern for bias across all articles included. Age was strongly associated with mortality with a difference of medians (DoM) of 13.15 years (95% confidence interval (CI) 11.37 to 14.94) between those who died and those who survived. We found a clinically relevant difference between non-survivors and survivors for C-reactive protein (CRP; DoM 69.10 mg/L, CI 50.43 to 87.77), lactate dehydrogenase (LDH; DoM 189.49 U/L, CI 155.00 to 223.98), cardiac troponin I (cTnI; DoM 21.88 pg/mL, CI 9.78 to 33.99) and D-Dimer (DoM 1.29mg/L, CI 0.9 to 1.69). Furthermore, cerebrovascular disease was the co-morbidity most strongly associated with mortality (Odds Ratio 3.45, CI 2.42 to 4.91) and ICU admission (Odds Ratio 5.88, CI 2.35 to 14.73). Discussion This comprehensive meta-analysis found age, cerebrovascular disease, CRP, LDH and cTnI to be the most important risk-factors that predict severe COVID-19 outcomes and will inform clinical scores to support early decision-making.
DOI:doi:10.1371/journal.pone.0255154
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1371/journal.pone.0255154
 Volltext: https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=DynamicDOIArticle&SrcApp=WOS&KeyAID=10.1371%2 ...
 DOI: https://doi.org/10.1371/journal.pone.0255154
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:association
 cancer
 china
 coronavirus disease 2019
 hospital mortality
 multicenter
 risk-factors
 wuhan
K10plus-PPN:1780990014
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68811318   QR-Code
zum Seitenanfang