Navigation überspringen
Universitätsbibliothek Heidelberg
Status: bestellen
> Bestellen/Vormerken
Verfasst von:Gürsakal, Necmi [VerfasserIn]   i
 Çelik, Sadullah [VerfasserIn]   i
 Birişçi, Esma [VerfasserIn]   i
Titel:Synthetic data for deep learning
Titelzusatz:generate synthetic data for decision making and applications with python and R
Verf.angabe:Necmi Gürsakal, Sadullah Çelik, Esma Birişçi
Verlagsort:New York, NY
Verlag:Apress
E-Jahr:2022
Jahr:[2022]
Umfang:xix, 220 Seiten
Illustrationen:Illustrationen, Diagramme (farbig)
ISBN:978-1-4842-8586-2
Abstract:Data is the indispensable fuel that drives the decision making of everything from governments, to major corporations, to sports teams. Its value is almost beyond measure. But what if that data is either unavailable or problematic to access? That's where synthetic data comes in. This book will show you how to generate synthetic data and use it to maximum effect.Synthetic Data for Deep Learning begins by tracing the need for and development of synthetic data before delving into the role it plays in machine learning and computer vision. You'll gain insight into how synthetic data can be used to study the benefits of autonomous driving systems and to make accurate predictions about real-world data. You'll work through practical examples of synthetic data generation using Python and R, placing its purpose and methods in a real-world context. Generative Adversarial Networks (GANs) are also covered in detail, explaining how they work and their potential applications.After completing this book, you'll have the knowledge necessary to generate and use synthetic data to enhance your corporate, scientific, or governmental decision making.What You Will LearnCreate synthetic tabular data with R and PythonUnderstand how synthetic data is important for artificial neural networksMaster the benefits and challenges of synthetic dataUnderstand concepts such as domain randomization and domain adaptation related to synthetic data generationWho This Book Is ForThose who want to learn about synthetic data and its applications, especially professionals working in the field of machine learning and computer vision. This book will also be useful for graduate and doctoral students interested in this subject
URL:Cover: http://www.dietmardreier.de/annot/4B56696D677C7C39353935323935317C7C434F50.jpg?sq=5
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Online-Ausgabe: Gürsakal, Necmi, 1950 - : Synthetic data for deep learning. - New York : Apress, 2022. - 1 Online-Ressource (xix, 220 Seiten)
Sach-SW:Artificial intelligence
 COMPUTERS / Artificial Intelligence
 COMPUTERS / General
 COMPUTERS / Programming Languages / Python
 Computing & information technology
 Künstliche Intelligenz
 Machine learning
 Maschinelles Lernen
 Programmier- und Skriptsprachen, allgemein
 Programming & scripting languages: general
K10plus-PPN:1830204653
Exemplare:

SignaturQRStandortStatus
LN-U 10-19815QR-CodeZweigstelle Neuenheim / Lehrbuchsammlung3D-Planbestellbar
Mediennummer: 20218153

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69053451   QR-Code
zum Seitenanfang