Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Al-Malah, Kamal I. M. [VerfasserIn]   i
Titel:Machine and deep learning using MATLAB
Titelzusatz:algorithms and tools for scientists and engineers
Verf.angabe:Kamal I. M. Al-Malah
Verlagsort:Hoboken, NJ
Verlag:John Wiley & Sons, Inc.
Jahr:2024
Umfang:1 online resource
Fussnoten:Description based on online resource; title from digital title page (viewed on October 25, 2023)
ISBN:978-1-394-20911-8
 1-394-20911-8
 978-1-394-20910-1
 1-394-20910-X
 978-1-394-20908-8
Abstract:MACHINE AND DEEP LEARNING In-depth resource covering machine and deep learning methods using MATLAB tools and algorithms, providing insights and algorithmic decision-making processes Machine and Deep Learning Using MATLAB introduces early career professionals to the power of MATLAB to explore machine and deep learning applications by explaining the relevant MATLAB tool or app and how it is used for a given method or a collection of methods. Its properties, in terms of input and output arguments, are explained, the limitations or applicability is indicated via an accompanied text or a table, and a complete running example is shown with all needed MATLAB command prompt code. The text also presents the results, in the form of figures or tables, in parallel with the given MATLAB code, and the MATLAB written code can be later used as a template for trying to solve new cases or datasets. Throughout, the text features worked examples in each chapter for self-study with an accompanying website providing solutions and coding samples. Highlighted notes draw the attention of the user to critical points or issues. Readers will also find information on: Numeric data acquisition and analysis in the form of applying computational algorithms to predict the numeric data patterns (clustering or unsupervised learning) Relationships between predictors and response variable (supervised), categorically sub-divided into classification (discrete response) and regression (continuous response) Image acquisition and analysis in the form of applying one of neural networks, and estimating net accuracy, net loss, and/or RMSE for the successive training, validation, and testing steps Retraining and creation for image labeling, object identification, regression classification, and text recognition Machine and Deep Learning Using MATLAB is a useful and highly comprehensive resource on the subject for professionals, advanced students, and researchers who have some familiarity with MATLAB and are situated in engineering and scientific fields, who wish to gain mastery over the software and its numerous applications.
URL:Aggregator: https://learning.oreilly.com/library/view/-/9781394209088/?ar
 Cover: https://swbplus.bsz-bw.de/bsz1868806537cov.jpg
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe: Al-Malah, Kamal I. M.: Machine and Deep Learning Using MATLAB. - 1st ed.. - Newark : John Wiley & Sons, Incorporated, 2024. - xvii, 570 Seiten
RVK-Notation:ZM 9060   i
Sach-SW:COM094000
 Machine learning
 Maschinelles Lernen
K10plus-PPN:1868806537
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m4399853638
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69134832   QR-Code
zum Seitenanfang