Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Keenan, Tiarnan D. L. [VerfasserIn]   i
 Chen, Qingyu [VerfasserIn]   i
 Agrón, Elvira [VerfasserIn]   i
 Tham, Yih-Chung [VerfasserIn]   i
 Goh, Jocelyn Hui Lin [VerfasserIn]   i
 Lei, Xiaofeng [VerfasserIn]   i
 Ng, Yi Pin [VerfasserIn]   i
 Liu, Yong [VerfasserIn]   i
 Xu, Xinxing [VerfasserIn]   i
 Cheng, Ching-Yu [VerfasserIn]   i
 Bikbov, Mukharram M. [VerfasserIn]   i
 Jonas, Jost B. [VerfasserIn]   i
 Bhandari, Sanjeeb [VerfasserIn]   i
 Broadhead, Geoffrey K. [VerfasserIn]   i
 Colyer, Marcus H. [VerfasserIn]   i
 Corsini, Jonathan [VerfasserIn]   i
 Cousineau-Krieger, Chantal [VerfasserIn]   i
 Gensheimer, William [VerfasserIn]   i
 Grasic, David [VerfasserIn]   i
 Lamba, Tania [VerfasserIn]   i
 Magone, M. Teresa [VerfasserIn]   i
 Maiberger, Michele [VerfasserIn]   i
 Oshinsky, Arnold [VerfasserIn]   i
 Purt, Boonkit [VerfasserIn]   i
 Shin, Soo Y. [VerfasserIn]   i
 Thavikulwat, Alisa T. [VerfasserIn]   i
 Lu, Zhiyong [VerfasserIn]   i
 Chew, Emily Y. [VerfasserIn]   i
Titel:DeepLensNet: Deep learning automated diagnosis and quantitative classification of cataract type and severity
Verf.angabe:Tiarnan D.L. Keenan, Qingyu Chen, Elvira Agrón, Yih-Chung Tham, Jocelyn Hui Lin Goh, Xiaofeng Lei, Yi Pin Ng, Yong Liu, Xinxing Xu, Ching-Yu Cheng, Mukharram M. Bikbov, Jost B. Jonas, Sanjeeb Bhandari, Geoffrey K. Broadhead, Marcus H. Colyer, Jonathan Corsini, Chantal Cousineau-Krieger, William Gensheimer, David Grasic, Tania Lamba, M. Teresa Magone, Michele Maiberger, Arnold Oshinsky, Boonkit Purt, Soo Y. Shin, Alisa T. Thavikulwat, Zhiyong Lu, Emily Y. Chew, for the AREDS Deep Learning Research Group
E-Jahr:2022
Jahr:May 2022
Umfang:14 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar: 3 January 2022, Artikelversion: 20 April 2022 ; AREDS Deep Learning Research Group: Priscilla Ajilore, Alex Akman, Nadim S. Azar, William S. Azar, Bryan Chan, Victor Cox, Amisha D. Dave, Rachna Dhanjal, Mary Donovan, Maureen Farrell, Francisca Finkel, Timothy Goblirsch, Wesley Ha, Christine Hill, Aman Kumar, Kristen Kent, Arielle Lee, Pujan Patel, David Peprah, Emma Piliponis, Evan Selzer, Benjamin Swaby, Stephen Tenney, and Alexander Zeleny ; Gesehen am 26.02.2024
Titel Quelle:Enthalten in: Ophthalmology
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1978
Jahr Quelle:2022
Band/Heft Quelle:129(2022), 5 vom: Mai, Seite 571-584
ISSN Quelle:1549-4713
Abstract:Purpose - To develop deep learning models to perform automated diagnosis and quantitative classification of age-related cataract from anterior segment photographs. - Design - DeepLensNet was trained by applying deep learning models to the Age-Related Eye Disease Study (AREDS) dataset. - Participants - A total of 18 999 photographs (6333 triplets) from longitudinal follow-up of 1137 eyes (576 AREDS participants). - Methods - Deep learning models were trained to detect and quantify nuclear sclerosis (NS; scale 0.9-7.1) from 45-degree slit-lamp photographs and cortical lens opacity (CLO; scale 0%-100%) and posterior subcapsular cataract (PSC; scale 0%-100%) from retroillumination photographs. DeepLensNet performance was compared with that of 14 ophthalmologists and 24 medical students. - Main Outcome Measures - Mean squared error (MSE). - Results - On the full test set, mean MSE for DeepLensNet was 0.23 (standard deviation [SD], 0.01) for NS, 13.1 (SD, 1.6) for CLO, and 16.6 (SD, 2.4) for PSC. On a subset of the test set (substantially enriched for positive cases of CLO and PSC), for NS, mean MSE for DeepLensNet was 0.23 (SD, 0.02), compared with 0.98 (SD, 0.24; P = 0.000001) for the ophthalmologists and 1.24 (SD, 0.34; P = 0.000005) for the medical students. For CLO, mean MSE was 53.5 (SD, 14.8), compared with 134.9 (SD, 89.9; P = 0.003) for the ophthalmologists and 433.6 (SD, 962.1; P = 0.0007) for the medical students. For PSC, mean MSE was 171.9 (SD, 38.9), compared with 176.8 (SD, 98.0; P = 0.67) for the ophthalmologists and 398.2 (SD, 645.4; P = 0.18) for the medical students. In external validation on the Singapore Malay Eye Study (sampled to reflect the cataract severity distribution in AREDS), the MSE for DeepSeeNet was 1.27 for NS and 25.5 for PSC. - Conclusions - DeepLensNet performed automated and quantitative classification of cataract severity for all 3 types of age-related cataract. For the 2 most common types (NS and CLO), the accuracy was significantly superior to that of ophthalmologists; for the least common type (PSC), it was similar. DeepLensNet may have wide potential applications in both clinical and research domains. In the future, such approaches may increase the accessibility of cataract assessment globally. The code and models are available at https://github.com/ncbi/deeplensnet.
DOI:doi:10.1016/j.ophtha.2021.12.017
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1016/j.ophtha.2021.12.017
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S0161642021009672
 DOI: https://doi.org/10.1016/j.ophtha.2021.12.017
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Artificial intelligence
 Automated diagnosis
 Cataract
 Cortical cataract
 Deep learning
 Nuclear sclerosis
 Posterior subcapsular cataract
 Severity classification
 Telemedicine
 Teleophthalmology
K10plus-PPN:1881562778
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69185507   QR-Code
zum Seitenanfang