Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Esposito, Francesco [VerfasserIn]  |
Titel: | Programming large language models with Azure Open AI |
Titelzusatz: | conversational programming and prompt engineering with LLMs |
Verf.angabe: | Francesco Esposito |
Ausgabe: | [First edition]. |
Verlagsort: | [Place of publication not identified] |
Verlag: | Microsoft Press |
E-Jahr: | 2024 |
Jahr: | [2024] |
Umfang: | 1 online resource (256 pages) |
Illustrationen: | illustrations |
Gesamttitel/Reihe: | Professional |
Fussnoten: | Includes index |
Abstract: | Autonomously communicate with users and optimize business tasks with applications built to make the interaction between humans and computers smooth and natural. Artificial Intelligence expert Francesco Esposito illustrates several scenarios for which a LLM is effective: crafting sophisticated business solutions, shortening the gap between humans and software-equipped machines, and building powerful reasoning engines. Insight into prompting and conversational programmingwith specific techniques for patterns and frameworksunlock how natural language can also lead to a new, advanced approach to coding. Concrete end-to-end demonstrations (featuring Python and ASP.NET Core) showcase versatile patterns of interaction between existing processes, APIs, data, and human input. |
URL: | Aggregator: https://learning.oreilly.com/library/view/-/9780138280383/?ar |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Interfaces de programmation d'applications |
| Microsoft Azure (Plateforme informatique) |
| Intelligence artificielle ; Logiciels |
| APIs (interfaces) |
K10plus-PPN: | 1885005342 |
|
|
| |
Lokale URL UB: | Zum Volltext |
|
|
| Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg |
| Bestellen/Vormerken für Benutzer des Klinikums Mannheim Eigene Kennung erforderlich |
Bibliothek/Idn: | UW / m4507201756 |
Lokale URL Inst.: | Zum Volltext |
Programming large language models with Azure Open AI / Esposito, Francesco [VerfasserIn]; [2024] (Online-Ressource)
69197214