Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Rank, Luisa [VerfasserIn]   i
 Lysakovski, Peter [VerfasserIn]   i
 Major, Gerald [VerfasserIn]   i
 Ferrari, Alfredo [VerfasserIn]   i
 Tessonnier, Thomas [VerfasserIn]   i
 Debus, Jürgen [VerfasserIn]   i
 Mairani, Andrea [VerfasserIn]   i
Titel:Development and verification of an electron Monte Carlo engine for applications in intraoperative radiation therapy
Verf.angabe:Luisa Rank, Peter Lysakovski, Gerald Major, Alfredo Ferrari, Thomas Tessonnier, Jürgen Debus, Andrea Mairani
E-Jahr:2024
Jahr:08 June 2024
Umfang:17 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 18.11.2024
Titel Quelle:Enthalten in: Medical physics
Ort Quelle:Hoboken, NJ : Wiley, 1974
Jahr Quelle:2024
Band/Heft Quelle:51(2024), 9 vom: Sept., Seite 6348-6364
ISSN Quelle:2473-4209
 1522-8541
Abstract:Background In preparation of future clinical trials employing the Mobetron electron linear accelerator to deliver FLASH Intraoperative Radiation Therapy (IORT), the development of a Monte Carlo (MC)-based framework for dose calculation was required. Purpose To extend and validate the in-house developed fast MC dose engine MonteRay (MR) for future clinical applications in IORT. Methods MR is a CPU MC dose calculation engine written in C++ that is capable of simulating therapeutic proton, helium, and carbon ion beams. In this work, development steps are taken to include electrons and photons in MR are presented. To assess MRs accuracy, MR generated simulation results were compared against FLUKA predictions in water, in presence of heterogeneities as well as in an anthropomorphic phantom. Additionally, dosimetric data has been acquired to evaluate MRs accuracy in predicting dose-distributions generated by the Mobetron accelerator. Runtimes of MR were evaluated against those of the general-purpose MC code FLUKA on standard benchmark problems. Results MR generated dose distributions for electron beams incident on a water phantom match corresponding FLUKA calculated distributions within 2.3% with range values matching within 0.01 mm. In terms of dosimetric validation, differences between MR calculated and measured dose values were below 3% for almost all investigated positions within the water phantom. Gamma passing rate (1%/1 mm) for the scenarios with inhomogeneities and gamma passing rate (3%/2 mm) with the anthropomorphic phantom, were > 99.8% and 99.4%, respectively. The average dose differences between MR (FLUKA) and the measurements was 1.26% (1.09%). Deviations between MR and FLUKA were well within 1.5% for all investigated depths and 0.6% on average. In terms of runtime, MR achieved a speedup against reference FLUKA simulations of about 13 for 10 MeV electrons. Conclusions Validations against general purpose MC code FLUKA predictions and experimental dosimetric data have proven the validity of the physical models implemented in MR for IORT applications. Extending the work presented here, MR will be interfaced with external biophysical models to allow accurate FLASH biological dose predictions in IORT.
DOI:doi:10.1002/mp.17180
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1002/mp.17180
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.17180
 DOI: https://doi.org/10.1002/mp.17180
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:electron
 engine
 intraoperative
 mobetron
 Monte Carlo
 MonteRay
 radiotherapy
K10plus-PPN:1908844841
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69274423   QR-Code
zum Seitenanfang